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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1 9 6 9 ,  S E R .  2 ,  VOL. 2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Oscillation theory and computational procedures for matrix 
Sturm-Liouville eigenvalue problems, with an application to 
the hydrogen molecular ion 

J. McI. CALVERT and W. D. DAVISON 
Department of -4pplied Mathematics and Theoretical Physics, Queen’s University 
of Belfast 
MS.  receioed 18th December 1968 

Abstract. A generalized Prufer transformation is used to derive comparison and 
oscillation theorems for the matrix Sturm-Liouville eigenvalue problem. I t  is shown 
in particular that if the eigenvectors are required to vanish at one (at least) of the 
end points, then the eigenvalues are uniquely characterized by the number of points 
(termedfocal points) at which a certain determinant (of linearly independent solutions 
each satisfying the other boundary condition) vanishes. Simple but effective com- 
putational procedures based on this analysis are suggested, and their use is illustrated 
by a single-centre calculation on the 3su state of the hydrogen molecular ion. 

1. Introduction 
The problem of determining the eigenvalues and eigenfunctions of a single Sturm- 

Liouville equation with prescribed boundary conditions is familiar in many branches of 
theoretical physics, and numerical procedures for its solution have been extensively 
studied. In  the particularly important case of the radial Schrodinger equation, the method 
commonly adopted is to integrate several times from the two end points in opposite 
directions, adjusting the trial eigenvalue (e.g. by the Newton-Raphson method) until the 
logarithmic derivatives of the inward and outward solutions are equal at some suitable 
intermediate point of the range (see Cooley 1961, Mayers 1962). The eigenvalue so obtained 
is uniquely labelled by the number of nodes in the corresponding eigenfunction, and indeed, 
as Nachamkin (1968) has pointed out, the eigenvalues can often be quite accurately deter- 
mined by integrating in one direction only and observing the position and number of nodes 
in the solution for different choices of trial eigenvalue. This latter method appeals directly 
to the well-known Sturm comparison and oscillation theorems. An elegant proof of these 
theorems may be given by use of the Prufer transformation (Prufer 1926, Brand 1966) and 
alternative numerical procedures based on the transformed equation have been discussed 
recently (Bailey 1966, Godart 1966, Banks and Kurowski 1968); these methods have the 
advantage that the mth eigenvalue is obtained directly by setting the required value of m 
in the transformed boundary conditions. 

The matrix Sturm-Liouville problem (in which one seeks to determine the eigenvalues 
and eigenvectors of a set of coupled equations) has received rather less attention, although 
it is assuming an increasing importance in quantum mechanical investigations. We have 
come to consider the problem in some detail as a result of our interest in numerical single- 
centre molecular wave functions (see Bishop 1967 for references), but many other applica- 
tions could be mentioned; for example, the investigation of resonant states of the Feshbach 
or closed-channel type in which a particle is temporarily bound in the field of an excited 
system (see, e.g., Levine et  al. 1968, von Seggern and Toennies 1969). In this paper we 
first use a generalization of the Prufer transformation to discuss how the concept of a node, 
which is so useful in the scalar case, can be extended to a matrix context. Generalized 
comparison and oscillation theorems are derived for a wide class of boundary conditions. 
Then we outline some numerical procedures suggested by our analysis which, while 
simpler than those previously proposed, appear to work very satisfactorily for coupled 
radial equations arising from a decomposition of the Schrodinger equation. As an illustra- 
tion, we describe a single-centre calculation on the 3sa state of the hydrogen molecular ion. 
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2. Oscillation theory 
The approach that we adopt here has been suggested by the admirable exposition 

of Atkinson (1964)) to which the reader is particularly referred for the derivation of several 
results which we quote without proof (see also the appendix to this paper). 

We consider a set of n coupled Sturm-Liouville equations, written in the general form 

[R(x)y’(x,A)]’+[AP(x)+Q(x)l~(x,h) = 0 (1) 
where a prime denotes differentiation with respect to x .  R, R’, P and Q are Hermitian 
n x n matrices, continuous on a finite closed interval [a, b], y ,  y’ are n x 1 column matrices 
and A is a real parameter. It will be further assumed that both P and R are positive definite. 
Suppose that we are seeking values of A for which there exist solutions of ( 1 )  satisfying the 
boundary conditions 

cos Q ~ y ( u ,  A )  - sin Qx v(a,  A )  = 0 (2a) 

where 

and 0 4 U < 277, 0 < ,8 < 27. More general boundary conditions are possible and will be 
considered later, but for the sake of clarity our initial discussion will be restricted to the 
simpler conditions (2). 

We define an n x n matrix Y(x, A) as the ‘forward’ solution of 

[R(x)Y’(x,X)]’+[AP(X)+Q(~)]Y(~,X) = 0 (4) 
satisfying the conditions 

cosQxY(a,A)-sin+x V(a,A) = 0 

where 
sin 4% Y(a, A )  -cos i x  V ( a ,  A )  = A 

V(X, A )  = R(x)Y’(x, A )  

and A is an n x n matrix formed from any suitable set of n linearly independent column 
vectors. The  columns of Y(x, A) form what may be termed a conjugate system ofsohtions of 
(1) ; they are linearly independent and any solution of (1) satisfying (2a) may be expressed 
as a linear combination of them (cf. Bliss and Schoenberg 1931). 

T o  obtain a matrix generalization of the Prufer transformation, we consider the unitary 
matrix 

W(x,A) = (V+iY)(V-iY)- l .  (7 )  
We shall be interested in the eigenvalues of W which (since W is unitary) lie on the unit 
circle in the complex plane. For suppose that there exists a non-trivial solution y(x ,  A) 
of (1) satisfying the condition (2a) and 

cos&3y(~,A)-sin+/3v(E,A) = 0 (8) 
at some x = E > a. Introducing the vector Z( A )  which is such that 

Y(., A )  = Y(x, A)Z(X) 
v ( x ,  A) = V(x, A)z(A) 

it follows that at x = 

and hence that 

where 

cos@ Yz-sinQp Vz = 0 

W((, h)w(A) = ei4w(A) 

w(h) = (V-  iY)z. 

( 9 )  

Thus W((, A) has ei4 among its eigenvalues. Conversely, if one of the eigenvalues of 
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W ( f ,  A) is eiP and w(A) is the corresponding eigenvector, then 

y(x, A) = Y(x, A)[V(f ,  A) - iY(6, h)l-'w(4 (13)  
is a solution of (1) satisfying (2a)  and (8). 

in the open 
interval a < f < b for which there exists a non-trivial solution of (1) satisfying the boundary 
conditions (2a) and (8). At such points (if they exist), W has ela among its eigenvalues. 
We shall be particularly interested in the case where p = 2n in (8); the corresponding right- 
conjugate points (henceforth denoted by x1 < x2 < xg ...) will be termed focalpoints of the 
conjugate system of solutions forming Y (Morse 1930). At each focal point x i ,  W(x,, A) 
has + 1 among its eigenvalues and there exists a non-trivial solution of (1) satisfying (2a) 
and 

I t  follows from (13) that the focal points are just those points at which 

We define the right-cottjugatepoints of the point x = a as those values of 

y(x,, A) = 0 .  (14) 

D ( q ,  A) det Y(x,, A) = 0 .  (15) 
?Ve must now consider how the arguments 8,(x, A) of the eigenvalues w,(x, A) of 

W(x, A) (i = 1, ..., n)  vary with x and A. We first note that W(a, A) is just eia times the 
unit n x n matrix and thus all its eigenvalues w,(a, A) are e'@; it is convenient to choose all 
their arguments to be the same, viz. 

O,(a, A) = x i = 1, ..., n. (16) 
It may be shown that the 8,(x, A) can then be continued uniquely and continuously so 
that 

B,(~, A) < ez(x, A) G . . . < A) G e,(%, A) + zT. (17) 
From the theorems given in the appendix, we have that the angles 8,(x, A) are monotonic 
increasing functions of x when they are passing through a multiple of 2n (i.e. when w,(x, A) 
is passing through + 1 and x is passing through a focal point), and also on any interval for 
which the matrix [AP(x)+ Q(x)] is positive definite; furthermore they are monotonic 
increasing functions of A. Using these properties we can immediately derive a generaliza- 
tion of Sturm's comparison theorem: as A is increased, the focal points x,, as given by the 
roots of (15), move to the left (cf. Bliss and Schoenberg 1931). 

N o w  our discussion indicates that the eigenvalues of the problem (l), (2) are the roots 
of 

for i = 1, ,.., n and m any integer. However, from (16) and the fact that Bi cannot pass 
through a multiple of 2n from the above, we have that 

8,(b, A) = /I + 2mn (18) 

8,(x,A) > 0 a < x < b (19) 

(20) 

for i = 1, ..., n and any A, so (18) has no solution for negative m. Now it may be shown 
that 

lim 8,(b,A) = 0 i = 1, ..., n 
a + - m  

and so, as A increases from - 03, the angles 8,(b, A) each increase from zero, assuming each 
positive value once only. It follows that the values of A at which the angles O,(b, A) pass 
through values ,8 + 2mn (m  0) may be labelled 

A, < A, G A, < ... . 
The first n eigenvalues correspond to the passage of the angles O,(b, A) through the value 
p, the next n eigenvalues to passage through /3+2.n, and so on. Hence a particular angle, 
8,(b, A )  say, goes through ,8+2mrr when A = A,, where 

p = (mi- 1)n-k .  (21) 
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We now ask, how many focal points will there be in a < x < b when h = A,? T o  begin 
with, there will be m focal points at values of x for which 

4 ( x ,  A,) = 2n, 4n, ..., 2mn. 

Then there will be additional focal points at values of x where the other angles 
842, A,) (i # k) pass through multiples of 2n. In  determining their number, it is useful to 
consider separately the cases ,I3 = 277 and /3 # 2n. For convenience we write 8{ for 
84b, A,) in the following discussion. 

Suppose first that ,I3 = 2n. Then B,, e,-,, ..., will all lie in the range 

2(m+l )n  < 8 < 2(m+2)n 

and will each give rise to (m+ 1) focal points in a < x < b,  a total of (m+ l ) ( n - k ) .  The 
other angles e,-,, 8 k - 2  ..., 81 will lie in the range 

2mn < 8 < 2(m+ l )n  

and will each give rise to m focal points, a total of m(k- 1). So the total number of focal 
points is precisely 

N ( A , )  = m+ (m+l ) (n -k )+m(k -1 )  = ( m + l ) n - k  = p .  (22) 
Now consider the case where 0 < ,I3 < 2n. The total number of focal points will then 

depend on the distribution of the other 8$ around 8,. However, we can readily derive upper 
and lower bounds on N(A,) ,  using (17). The maximum number of focal points will occur 
when 8,, e,-,, .,., 8 k - l  all lie in the range 

2(m+l )n  < 8 < ,f3+2(m+l)n 

and 8 k - 1 ,  8 k - 2 ,  ..., 81 all lie in the range 

2mn < B < P+2mn. 

Then it is clear that N(h,) has the same value as in the case where ,I3 = 2n, namelyp. The  
minimum number of focal points will occur when e,, e,-,, ..., Bktl all lie in the range 

/3+2mn < 8 < Z(m+l )x  

and 8 k - l ,  B k - * ,  ..., 8, all lie in the range 

,f3+2(m-l)n < 8 < 2mn 

(except when m = 0). In  this case we have that 

N ( A , )  = m + ( n - k ) m + ( k - l ) ( m - l )  = p - n + 1 .  
For the special case m = 0, 8k-1, e k - 2 ,  ..., 81 must lie in the range 

0 < 8 < / 3  

and the minimum number of focal points is zero. 

satisfies 
PC'e therefore conclude that in general N ( h p ) ,  the number of focal points when A = A,, 

max(p - n + 1 , O )  < N(h,) < p (24) 

the upper equality holding for the case ,I3 = 2n. This oscillation theorem is a generalization 
of that proved by Bliss and Schoenberg (1931) for the simple case GI = 0, ,I3 = 2n and of 
course it includes the familiar Sturm oscillation theorem for the scalar problem (n  = 1). 
We observe that (17) admits the possibility of two (or more) of the eigenvalues of W being 
equal for certain values of x and A ;  such an accidental degeneracy may in particular occur 
at a focal point, more than one of the eigenvalues of W being then equal to + 1. In  
determining N( A), each focal point should therefore be counted according to its order, i.e. 
the number of linearly independent solutions of (1) satisfying (2a) and vanishing at the 
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focal point.? In  practice, focal points of multiple order are not likely to occur very 
often, but in any case they should be easy to detect, since they will be observed to split apart 
as A is varied. In  the remainder of the discussion we shall assume that any such degeneracies 
have been taken into account in finding N ( A ) .  

The  number of focal points thus provides a unique characterization of the eigenvalues A, 
if /3 = 2 ~ ,  but not for other values of /3 (except in the scalar case n = 1). NOF we could 
equally well have considered a ‘backward’ solution of (4), which we denote by Y(x, A), and 
which satisfies the conditions 

cos &/3 Y(b ,  A) - sin +p V ( b ,  A) = o 
sin $/3 Y ( b ,  A) - cos @ V ( b ,  A )  = A. 

W(x, A) = (V+ iV)(V- iV1-1 

(25 1 

(26) 

If we form the unitary matrix 

the arguments Bi(x, A) of its eigenvalues Gi(x, A) may be chosen so that 

&@,A) = #f3+2ST (27) 
where s is any fixed integer, and they then satisfy (17) for all x in [a, b] .  They are monotonic 
increasing functions of x under the same conditions as are the angles B,(x, A) but they 
differ in being monotonic decreasing functions of A. Just as in the case of the forward 
solution, we can define a family of focal points (ai) as left-conjugate points of x = b relative 
to the boundary condition 

At such points one of the eigenvalues of W(Fi, A) is passing through + 1 and 

Y(Zi,A) = 0 .  (28) 

(29) B(ni, A) E det v ( Z , , A )  = 0. 

The  same comparison theorem may then be derived for the points 3, except that ‘right’ 
replaces ‘left’. Once again we can show that iy( A,), the number of focal points xi when 
A = A,, is preciselyp when 

The practical importance of the foregoing discussion is that it indicates under what 
conditions we can investigate the eigenvalue spectrum simply by counting the number of 
focal points for different values of A. Suppose for example that tl = 0. Then if 

= 0 and has the bounds (24) when x > 0. 

A 2 - l  < A 6 A, (30 )  
it is clear from our analysis that iT( A), the number of focal points in v ( x ,  A), is precisely p ;  
as h increases through A, a new focal point appears at x = a and moves to the right along 
with the otherpfocal points already present. So if for a certain choice of A we find by counting 
the roots of (29) that there a rep  focal points, then we can conclude that A is an upper bound 
on A,-,-(provided p > 0) and a lower bound on A,. For other boundary conditions at 
3: = a, X ( A )  may take values between max(p-n, 0) and p when A is in the range (30),  and 
in general iv( A) does not change by 1 as A goes through an eigenvalue. I t  is therefore not 
possible to obtain bounds on the eigenvalues by -consideration of iT( A) alone. However, 
if in addition we compute the eigenvalues of W(a, A), it is easily shown that we may 
determine their arguments di(a, A) unambiguously from a knowledge of iT(A), and so 
deduce the value of p in (30). 

Similar arguments apply if instead we consider N ( A ) ,  the number of focal points in 
Y(x, A).  However, in investigating the eigenvalue spectrum of coupled equations resulting 
from a decomposition of the Schrodinger equation, it is clearly preferable to compute the 
‘backward’ solution Y(x, A) and to consider iT(A). For one thing, numerical integration 
errors here tend to be of less significance for the backward integration. But a more import- 
ant feature is that the vector y can generally be defined so that the boundary condition at 

I. Similarly, in indexing the eigenvalues A i ,  account should be taken of any degeneracy therein 
corresponding to  more than one of the eigenvalues of W being el3 at x = b. 
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x = a (= 0 )  takes the form (2a) with U = 0. I t  is then possible to establish bounds on the 
eigenvalues from a knowledge of R(A) only, but not of N(A) (unless = 277 or n = 1). 
Practical computational procedures for this and other cases are discussed in detail in $ 3 .  

Problems in which (1) has singular points at x = a or x = b, or in which one or both of 
the end points is at infinity, require special attention, but we shall not discuss them here 
in any detail. Suffice it to say that, in the majority of such problems, no difficulty should 
arise if full use is made of the known asymptotic behaviour of the solution (see Bailey 1966 
and Banks and Kurowski 1968 for discussions of the scalar case). The SchrBdinger problem 
to which we have just referred is a case in point, and an example is given in $4. 

Finally we consider briefly the extension to include boundary conditions more general 
than (2) .  Suppose for example that the angle in (2) is a function of A. Then according to 
theorem IV of the appendix all our conclusions with regard to the focal points Zi will 
certainly continue to hold if the matrix 

2v av 
ax ax V*(b, A )  - ( 6 ,  A) - V*(b, A) - (b ,  A) 

is negative semi-definite for all .A. This in turn implies that 

for all A. More generally, suppose that the boundary condition at x = b takes the form 

B(A)y(b, A) - C(A)v(b, A) = 0 (32) 
where B and C are non-singular n x n matrices which may depend on A. Defining ? and 
by an obvious generalization of (E) ,  we find that our conclusions remain unchanged pro- 
vided the matrix B-IC is Hermitian and (d/dh)( B-IC) is negative semi-definite for all A. 

3. Computational procedures 
Given a set of coupled equations of the form (l), together with certain boundary 

conditions, a comprehensive investigation of the eigenvalue spectrum may be regarded as 
falling into two distinct parts. The  first problem is to determine the precise number and 
approximate location of eigenvalues below a certain value of A, A,,, say; it is important that 
we should be able to detect all the eigenvalues without an inordinate amount of computa- 
tion. Then we want to be able to determine any particular eigenvalue with high precision, 
together with the corresponding eigenvector if required. 

T o  start with, let us again consider the case where the boundary condition at x = a is 
just y(a, A) = 0, i.e. CI = 0, with possibly a more complicated boundary condition at 
x = b. We begin by generating the ‘backward’ solution Y(x, A) for a limited number of 
well-spaced values of A, using some suitable step-by-step method, and in each case we 
determine LT( A), the number of focal oints 3, as given by the roots of (29). We then look 

and the next above: if so, we repeat the backward integration for further values of A until 
we have filled in all such ‘gaps’, also ensuring that R(X) = 0 for the lowest value of A 
considered. In  this way, we establish upper and lower bounds (poor though some may be) 
on each of the eigenvalues below A,,,, and we can be sure that no eigenvalue has gone 
undetected. 

Then concentrating on a particular eigenvalue, A, say, we can proceed to progressively 
refine the upper and lower bounds on A p  by a simple ‘halving’ procedure similar to that 
suggested for the scalar problem by Nachamkin (1968) (see also Blatt 1967). In  principle 
this can be continued until the upper and lower bounds differ by less than some pre- 
scribed arbitrarily small quantity. However, since we gain only one binary digit of accuracy 
at each stage, the convergence of the process is rather slow, Additional difficulties arise when 
x = a is a singular point; the integration then has to be terminated just before the point 
x = a is reached, and the effect of increasing numerical errors as the singularity is 

to see if there are any cases in which K r( A) jumps by more than one between one value of h 

A 2 
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approached may be considerable, even if the integration interval is made very small. Once 
reasonably close bounds on A, have been established, there is therefore good reason for 
changing over to a faster iterative procedure. 

When x = a is not a singular point, we can make direct use of the fact that the deter- 
minant &a, A) is required to vanish when A = A,. Suppose that we have obtained 
reasonably close upper and lower bounds on A,. Then by two-point (linear) inverse 
interpolation we obtain a first estimate A’ of the value of A (i.e. A,) at which D(a, A) 
vanishes. Computing Y(x, A’) and hence D(a, A’) we obtain a secgnd estimate A” by 
three-point interpolation. This process is continued (using all the available values of 
D(a, A) for the inverse interpolation at each stage) until two successive estimates of A, 
differ by less than some prescribed quantity. 

However, when x = a is a singular point, then to obtain really high accuracy (even in 
the eigenvalue only-cf. Nachamkin 1968) it is necessary to integrate (4) also in the forward 
direction from x = a and to match the forward and backward solutions, together with 
their derivatives, at some intermediate point x,. Fox (1960, 1961) has discussed how 
the Newton-Raphson procedure can be adapted to this problem; a number of alternative 
and apparently simpler methods can, however, be suggested. The  matching condition is 
that there should exist non-trivial vectors a and b such that 

Y(x,,A)a = Y(x,,A)b 
V(x,, A)a = V ( x m ,  A)& 

when A = A,. 
This in turn implies that 

and one possible procedure (which we shall term method I) is to adjust A by an interpolative 
scheme similar to that already described so that dl( A) vanishes. Alternatively, elimination 
of the vector b in (33) leads to the condition 

d,(A) E det (Vv- lY - V) = 0 (35) 
which has the advantage that d2 is of order n only, in contrast to d, which is of order 2n ; 
an interpolation procedure based on (35) wiIl be termed method 11. 

A third procedure (method 111), which is particularly appropriate when both eigenvalue 
and eigenvector are required, is suggested by the technique developed by Burke and Smith 
(1962) for the solution of scattering equations with closed channels. We suppress one of the 
equations (33a), e.g. 

n n 

j=l j=1 

and replace it by the ‘normalization’ condition 
n 2 yipj = 1. 

j = 1  
(37) 

We then solve (37) and the remaining 2n-1 equations in (33) for the vectors a and b, 
adjusting A by an interpolative procedure until 

Often one component of the eigenvector y(x, Ap) will be known on physical grounds to be 
dominant and the choice of i will be obvious. This method also has the advantage that the 
vectors a and b are determined in the course of the calculation, so that the eigenvector 

y(x ,  A,) = Y(x, A,)a = V(X, A,)& (39) 
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can be immediately deduced when the iteration is complete. I t  is to be noted that all three 
methods require inverse interpolation in one dimension only. 

We have considered the case a = 0 in some detail since it is that which generally arises 
in solving the Schrodinger equation. However, the procedure to be adopted in other 
situations should by now be clear. For example, if = 0, we establish bounds on the 
eigenvalues by studying N( A), finally determining any particular eigenvalue A, either 
through the requirement that D(b, A) = 0 or by matching at x = x, in one of the ways just 
described. On the other hand, if neither of the boundary conditions is of the simple form 
y = 0, then we must supplement N ( A )  (or LV(A)) by the eigenvalues of W(b, A) (or of 
W(a, A)) in order to locate the eigenvalues A i ,  subsequently determining any particular 
eigenvalue by matching at x = x,. Fox (1960, 1961) found that x, had to be rather care-. 
fully chosen if erratic convergence was to be avoided; although further experience is 
clearly desirable, we feel that the additional information available from our analysis should 
result in the convergence of the calculation being less critically dependent on the choice 
of x,. 

4. Example : single-centre expansion for Hz + 

T o  illustrate the theory and practical techniques developed in the previous sections, 
we consider the calculation of the eigenvalues and eigenfunctions of the og states of the 
hydrogen molecular ion in a numerical single-centre formulation, with particular reference 
to the 3so state. Details of the analysis will be found in previous studies of the problem 
by Cohen and Coulson (1961) and Temkin (1963). If the internuclear separation is taken 
to be 2.0 (all quantities being expressed in atomic units), separation of the angular variables 
from the Schrodinger equation for the system leads to an infinite set of coupled radial 
equations which are of the form (2) with 

and 

+ 4  2 (2 i -2 ,  Zk, O,O~Zj-2,0)(2j-2,  2k, 0,012i-2,O) 
k 

(min(x, 1))2k 
{max(x, 1 ) ) 2 k + l  

X 

where (a, b, E, PIC, y )  is a vector-coupling coefficient. I n  practice, of course, we solve a 
truncated set of n equations only, and we can expect that, if 1 (which must be even) is the 
azimuthal quantum number in the united atom designation of a particular state, then 
yi(x)  with i = gl+ 1 will be the dominant component of the eigenvector ~ ( x ) ,  particularly 
for higher values of the principal quantum number and large x (cf. Mulliken 1964). 

The  appropriate boundary conditions are that 

Y(0,A) = 0 (42) 
and that lim y(x, A) should be finite. In  actual computation this second condition must be 
replaced by a condition at some large value of x (which we call x,) derived from a con- 
sideration of the asymptotic form of the coupled equations. The  most refined condition of 
this kind would be obtained either by an asymptotic series expansion of y(x, A) (Burke 
and Schey 1962) or by an extension of the WKB method to coupled equations (Smith et al. 
1968, private communication). However, for sufficiently large x, and X < 0, the condition 
obtained by either of these procedures will differ negligibly from the simpler condition 

x+ m 

v(xm,A)= y'(x,,A) = -(-2A)"~y(xm,A) (43) 
to which we restrict ourselves in the present calculation. Thus, in the notation of $ 2 ,  we 



286 

have 

J. McI. Calvert and W. D. Daoison 

u = o  

p = 2 c o t - y - (  -2A)1’2). (44) 
I t  will be noted that ,8 is an explicit function of A, but, since d/3/dA e 0, the oscillation 
theory of 5 2 applies without modification, as does the subsequent discussion in 5 3 which 
indicates that, since = 0, our initial study should be based on the focal points Zi of the 
‘backward’ solution Y(x, A). 

The integration of the coupled equations was carried out by the method of de Vogelaere 
(1955) (see also Lester 1968) using various fixed intervals h ;  Aitken’s method of interpola- 
tion was used in determining the eigenvalues, which were subsequently extrapolated to 
zero interval by Richardson’s method (see e.g. Kopal 1961). In  all the calculations x, 
was given the value 35-0, and it was verified that an increase in x, produced no significant 
change in thccomputed eigenvalues. I n  certain cases we also computed the eigenvalues of 
the matrix W(x, A), using the triangularization method discussed by Greenstadt (1955) 
and Lotkin (1956). These calculations serve to further illustrate the theory of 5 2, al- 
though they are not actually required for the determination of the eigenvalues A,. 

/ n = 2  i 

-0 21 I I I 
0 2 4 6 0 0 2 4 6 8 13 

X X 

Figure 1. Position of the focal points $2, for various values of A, in the scalar case 
7t = 1 and the simplest matrix case n = 2.  The arrows indicate the accurate eigen- 

values in each case. 

Figure 1 shows the position of the focal points 3, for various trial values of A in the 
scalar cases n = 1 and the simplest matrix case n = 2. The  actual eigenvalues for each 
value of n are also indicated, and the graphs show how a count of the number of focal points 
enables bounds to be put on the eigenvalues. Corresponding points have been connected 
by broken lines so as to exhibit clearly how each point moves to the right with increasing A, 
in accordance with the comparison theorem of 5 2. I t  will be noted that the 3do state does 
not appear in the case n = 1, since this corresponds to a spherically symmetric approxima- 
tion to the electronic wave function (the ‘molecular puff’ of Hauk and Parr 1965) which can 
accommodate so states only. 

I n  figure 2 the angles Bi in the case n = 2 have been plotted as functions of x for two 
values of A bounding the 3so eigenvalue, and the points at which they pass through mul- 
tiples of 2v have been projected out in order to illustrate how the position and number of 
focal points are related to the variation of the angles 0, with x and A. The  occurrence of 
extrema in figure 2 will be particularly noted, and is related to the fact that hhen the 
matrix 

F(x, A) E h P ( x )  + Q(x) (45 ) 



Matrix Sturm-Liouville eigenvalue problems 

I A = - 0  16 
*d A +- * 

287 

Figure 2. Angles 8, and focal points 3, in the case n = 2 for two values of bounding 
the 3sa eigenvalue. Broken curves, = -0.20; full curves, h = -0.16. 

-005 
c i  

- 1 . 0  ............ n = I  1 ............ /' n - 4  1s' 

I I I I I 1 _ _  
0 2 4 6 8 10 12 14 16 18 

X 
0 

Figure 3.  Curves, for various dimensions n, bounding the region of x and h for which 
the matrix F(x, A) defined by (45) is positive definite. The curves for n 2 4 lie outside 

the figure. 
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is not positive definite, the angles 8, are not necessarily all monotonic increasing functions 
of x. For given values of n and A, the range of x for which F is positive definite may be 
read off from figure3. I n  the vicinity of the 3so eigenvalue, F is positive definite for 
1.5 < x < 10 if n = 2, and as expected the extrema in figure 2 occur outside this range of 

277 I I I I I I I 

57l 
2 

-- 

1 I 
0 2 4 a IO I2 

6 x  

Figure 5 .  Angles 6, in the case n = 4 at the 3su eigenvalue ( A  = -0-177 57).  
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x ;  on the other hand, if n 3 3 there is no value of x for which F is positive definite, and this 
is reflected in figures 4 and 5 ,  in which the angles 8, and O2 respectively have been plotted 
as functions of x at the 3so eigenvalue in the case n = 4. It will be seen that in both figures 
some ‘crossings’ occur; this does not, as might perhaps be thought, imply any violation of 
theorem I1 in the appendix, which simply provides a way of determining the angles 8, 
and Oi unambiguously and of uniquely labelling the various branches of the resulting 
curves. In  figure 5 we also observe an ‘avoided crossing’. It will clearly be of interest to 
investigate further the conditions under which such features occur. 

Let us now consider the accurate determination of the 3so eigenvalue. I n  the scalar 
case n = 1, x = 0 is not a singular point, and the eigenvalue may be determined by locating 
the zero of 

as discussed in Q 3. The  results are given in table 1, and the rapid convergence of the 

Table 1. Determination of the 3 s ~  eigenvalue (12) for r~ = 1 

Iteration No. A 2  

1 -0.172886 
2 - 0.1 74737 
3 -0.174459 
4 - 0.1 74448 
5 - 0.1 74448 

These values were obtained with a fixed integration interval 
h = 0.025; the values obtained with h = 0.05 were found to be 

identical to the number of decimal places quoted, 

procedure is at once apparent. When n 3 2, there is a singularity at x = 0 arising from the 
first (centrifugal) term in (41)’ so it is necessary to adopt one of the matching procedures 
discussed in § 3. The  results for n = 4, with matching point x, = 7.0, are given in 

I , I I I 1 I 1 I 

Figure 6. Functions d,(h) in the case n = 4 near the 3sa eigenvalue, - - - , i = 1; 
full curve, i = 2; ----i = 3. 
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table 2. Method I1 exhibits the most rapid convergence, that of method I11 is almost as 
good, while that of method I is decidedly inferior, These differences reflect the different 
forms of the functions dt( A) in the vicinity of the 3sa eigenvalue, as shown in figure 6. 

Table 2. Determination of the 3sa eigenvalue (13) for tt = 4 

Method I I1 I11 

Initial -0.180 -0.185 -0,185 
bounds -0.375 -0.173 -0.173 

Iteration No. h 

0.100 - 0.176040 

0.025 
1 0.050 - 0.176075 

0.100 -0.179053 
2 0.050 -0.179178 

0.025 

0.100 -0.178380 
3 0.050 -0.178502 

0.025 

0.100 -0.177850 
4 0.050 -0,177952 

- 0.177478 
-0.177531 
-0,177537 

-0.177507 
-0,177561 
-0.177567 

-0.177507 
- 0.1 775 60 
-0.177567 

-0.176876 
-0.176920 

-0.177521 
-0.177575 

- 0.177507 
- 0,177560 

-0,177507 
- 0.177560 

5 0.100 - 0.177571 

6 0.100 - 0.1 7751 0 

7 0.100 -0.177507 

For the spherically symmetric approximation n = 1 we obtain the eigenvalue 
-0.174 448, which we believe to be more accurate than the value -0,174 476 derived by 
Chen (1958). After extrapolationto zero integrationinterval we obtain the value - 0,177 569 
for n = 47, which may be compared with the exact value (n +- CO) of - 0.177 68 (Bateset al. 
1953). The calculations illustrate not only the accuracy of the single-centre expansion 
method for excited states, but also the effectiveness and relative simplicity of the computa- 
tional procedures we have proposed. At the same time it would be surprising if the theory 
of 5 2 did not admit of several refinements and extensions, and it will be interesting to Bee 
how far various features appearing in the present calculations are reproduced in other 
applications. 
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Appendix 
We gather together here certain results concerning the eigenvalues of unitary matrices 

such as (7) and (26), obtained by adapting and extending various theorems proved by 
Atkinson ( 1964). 

t Cohen and Coulson (1961) quote an even lower value of -0.177 65 for n = 3;  however, this 
was obtained with a relatively large integration interval, and extrapolation to zero interval would 
undoubtedly yield a value higher than that which we quote for n = 4. 
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Let Y(x, A) be a solution of (4) defined by certain conditions at one of the end points 
x = c (c 3 a or c = b), such that at that point the matrix Y *V is Hermitian and (V - iY) 
has an inverse, where V is defined by (6). We then have: 

Theorem I .  The matrix 

exists in [a,  b],  is unitary, and satisfies the equation 
W = (V+iY>(V-iY)- l  (-41) 

where $2 is the Hermitian matrix 

$2 = 2(V*+iY*)-1{V*R-1V+Y*(hP+ Q)Y)(V-iY)-l. (A31 
Theorem 11. If the arguments Bi(x, A) of the eigenvalues of W are fixed so that they satisfy 
(17) at x = c, then they may be continued uniquely and continuously so that they satisfy (17) 
for all x in [a, b]. 
Theorem 111. For a given value of A, is positive definite for values of x (if they exist) such 
that [AP(x) + Q(x)] is positive definite, and for such x it follows that the angles e,(%, A) are 
monotonic increasing functions of x. But in any case, SZ can be shown to be positive 
definite when applied to eigenvectors of W associated with an eigenvalue + 1, and so the 
Bi(x, A) are at least monotonic increasing functions of x when passing through multiples 
of 2T. 
Theorem IV. For all real A 

A 

where S?, is the Hermitian matrix 

6 = 2(V*+iY*)-' [I" Y*(t,A)P(t)Y(t,A)dt+X(A)] (V-iY)- l  (A5) 
C 

with 

Then for all x for which the matrix in square brackets in (A5) is positive definite (or negative 
definite), the e,(%, A) are monotonic increasing (or decreasing) functions of A. Since P has 
been assumed to be positive definite, the integral in (A5) is either positive definite or nega- 
tive definite according as to whether c = a or c = b. Hence a suficient (but not necessary) 
condition for the Bi(x, A) to be monotonic increasing (or decreasing) functions of A is that 
the matrix X(h)  should be positive (or negative) semi-definite. 

References 
ATKINSON, F. V., 1964, Discrete and Continuous Boundary Problems (New York: Academic Press). 
BAILEY, P. B., 1966, S I A M  J .  Appl. Math., 14, 242-9. 
BANKS, D. O., and KUROWSKI, G. J., 1968, Math. Comput., 22, 304-10. 
BATES, D. R., LEDSHAM, K., and STEWART, A. L., 1953, Phil. Trans. R. Soc. A, 246,215-40. 
BISHOP, D. M., 1967, Advances in Quantum Chemistry, 3, 25-59, Ed. P.-0. LBwdin (New York: 

BLATT, J. M., 1967, J .  Comput. Phys., 1, 382-96. 
BLISS, G. A., and SCHOENBERG, I. J., 1931, Am. J .  Math., 53, 781-800. 
BRAh?), L., 1966, Differential and Difference Equations (New York: John Wiley), pp. 582-90. 
BURKE, P. G., and SCHEY, H. M., 1962, Phys. Rev., 126, 147-62. 
BURKE, P. G., and SMITH, K., 1962, Rev. Mod. Phys., 34,458-502. 
CHEN, T. C., 1958, J. Chem. Phys., 29,347-55. 
COHEN, M., and COULSON, C. A., 1961, Proc. Camb. Phil. Soc., 57, 96-103. 

Academic Press). 



292 J.  McI. Calvert and W. D. Davison 

COOLEY, J. W., 1961, Math. Comput., 15, 363-74. 
FOX, L., 1960, Boundary-value Problems in Dzgferential Equations, Ed. R. E. Langer (Madison, 

Wisconsin: University of Wisconsin Press), pp, 243-56. - 1961, Proc. Camb. Phil. Soc., 57, 103-6. 
GODART, M., 1966, Math. Comput., 20, 399-406. 
GREENSTADT, J.,  1955, Math, Tabl. Natn. Res. Coun., Wash., 9,47-52. 
HAUK, P., and PARR, R. G., 1965, J.  Chem. Phys., 43, 548-52. 
JOY, H. W., and HANDLER, G. S., 1965, J .  Chem. Phys., 42, 3047-51. 
KOPAL, Z., 1961, ATumerical Analysis, 2nd edn (London: Chapman and Hall). 
LESTER, W. A., 1968, J. Comput. Phys., 3, 322-6. 
LEVINE, R. D., JOHNSON, B. R., MUCKERMAN, J. T., and BERNSTEIN, R. B., 1968, J. Chem. Phys., 49, 

LOTKIN, M., 1956, Q. Appl. Math., 14, 267-75. 
MAYERS, D. F., 1962, Numerical Solution of Ordinary and Partial Differential Equations, Ed. L. Fox 

MORSE, M., 1930, Math. Ann., 103, 52-69. 
MULLIKEN, R. S., 1964, J. Am. Chem. Soc., 86, 3183-97. 
NACHAMKIN, J., 1968, Can. J. Phys., 46,445-6. 
PRUFER, H., 1926, Math. Ann., 95,499-518. 
VON SEGGERN, M., and TOENNIES, J. P., 1969, 2. Phys., in the press. 
TEMKIN, A., 1963, J .  Chem. Phys., 39,161-9. 
DE VOGELAERE, R., 1955, J .  Res. Natn. Bur. Stand., 54, 119-25. 

56-64. 

(Oxford: Pergamon Press), pp. 87-94. 


